La Table périodique quantique et les propriétés chimiques du mercure

Lors de mon précédent article sur la table périodique de la physique classique que je vous avais présenté, je vous avais dit que je souhaitais approfondir mes recherches sur ce monument de science réalisé par Mendeleïev et bien aujourd’hui, nous allons attaquer la version quantifiée (de la physique des quantas).

Accrochez-vous parce que ce n’est pas si intuitif et il y’a des termes à approfondir dans un premier temps, en voici une liste.

1/Table Périodique

2/ Orbitale atomique

3/ Nombre quantique n

4/ Sous-couches électroniques

5/ Nombre quantique secondaire L (Bloc)

6/ Nombre quantique magnétique ml

7/ Nombre quantique magnétique ms

8/ Règle de Kechklowski

Je vous ai préparé une table qui essaie de représenter ces concepts plus visuellement que ce que l’on trouve sur Wikipédia.

Ce qu’on remarque en premier lieu comparé à la table de physique classique c’est que nous avons deux fois moins de cases. Les éléments ne sont plus représentés mais laissent place à des couches et des sous-couches électroniques.

Essayez de zoomer ou de télécharger ma table pour le comprendre.

Nous n’avons donc plus 118 éléments mais une correspondance entre orbitales, couches, sous-couches et blocs définies par 59 cases : une case est une sous-couche, une couche est une ligne ou période.

Les couches sont représentées par le nombre quantique N qu’on peut aussi appeler période ; pour essayer de réconcilier la table de la physique classique et la table de la physique quantique. C’est ce que j’ai essayé de faire dans cette table.

Le nombre quantique N représente l’énergie de l’électron en fonction de sa place sur l’orbital, le nombre quantique L représente le moment angulaire de l’électron c’est à dire sa position sur l’orbital.

D’autre part les blocs (en bas sur ma table) sont représentés par le nombre quantique secondaire L dit azimutal :  0 ≤  ≤ n – 1. Cela vient du terme en astronomie azimut.

Révisons un petit peu la table périodique classique :

Table périodique classique :

Table périodique quantique :

Comme je l’ai déjà écrit nous n’avons donc plus 118 éléments mais une correspondance entre orbitales, couches, sous-couches et blocs définies par 59 cases.

N est le nombre quantique qui représente le nombre de couches électroniques de l’atome, la période c dite classique reprend les couches de la table périodique classique.

A gauche vous avez le nombre d’électrons total par période, blocs, orbitales, couches et sous-couches, En quantique on fonctionne toujours par pair, la première sous-couche 1S(harp) compte 2 électrons. 

Prenons la deuxième couche, elle compte 4 sous-couches 2S(harp) 3 sous couches 2P(rincipal) qui totalisent 8 électrons.

Pour vous expliquer comment les électrons se répartissent parmi ces couches

On va commencer par faire un petit calcul de configuration électronique pour un élément très important en médecine pour prendre la tension cardiaque systolique et diastolique : le Mercure de symbole atomique Hg.

Si on compare les deux tables on a un atome de mercure en position 80 (numéro atomique= nombre de charges = nombre d’électrons) en physique classique ce qui correspond à la case 5d(iffuse ) du bloc L2(moment angulaire) pour 5 orbitales dans les métaux dits de transitions.

On sait comme en physique classique que pour calculer la configuration électronique d’un élément chimique, il faut se reporter au gaz stable rare le plus proche en dessous dans le table périodique, dans notre cas précis c’est le Xénon.

Le Xénon [Xe] à un numéro atomique de 54 donc nous avons deux solution pour calculer la couche électronique du Mercure Hg

On part du Xénon et on va déterminer 80 électrons (mercure)-54 électrons(Xenon) = 36 il nous reste 36 électrons à placer.

Partez maintenant de la sous-couche correspondant à la place du mercure 5d(iffuse) à prendre les 3 sous-couches du Mercure en partant vers la gauche sur la table : 4f14+ 5d10 + 6s2 soit (14+10+2) électrons = 36.

54([Xenon])+36 = 80 (numéro atomique, nombre de charges(protons et électrons)).

Pour récapituler la configuration électronique est : [Xenon] 54 + les sous-couches 4f14+5d10+6s2

Mais alors comment repérer les électrons de valence avec cette notation ? : C’est simple ce sont les électrons associés à la couche du numéro atomique N le plus élevé car c’est la couche la plus éloignée du noyau atomique.

Dans notre exemple le Mercure a bien la couche 6s2 de nombre quantique 6 est celui qui va délimiter le nombre d’électrons sur la dernière couche N6 ou de période P = 2.

On va remplir d’abord la première case de cette table :

1/ D’après la méthode de Kachlowski on remplit d’abord la couche et la sous-couche 1s(harp), ce qui nous donne 2 électrons.

2/ Ensuite on remplit la sous-couche de la deuxième couche 2s(harp) ce qui nous donne encore 2 électrons.

3/ Ensuite on remplit deux sous-couches de deux couches différentes : 2p(rincipal) et 3s(harp) ce qui nous donne 8 électrons.

4/ Ensuite on remplit deux autres sous-couches de deux couches différentes : 3p(rincipal) et 4s(harp) ce qui donne encore 8 électrons.

5/ Ensuite on remplit 3 sous-couches de 3 couches différentes 3d(iffuse), 4(principal), 5s(harp) ce qui nous donne 18 électrons.

6/Ensuite on remplit 3 sous-couches de 3 couches différentes 4d(iffuse), 5(principal), 6s(harp) ce qui nous donne 18 électrons.

7/Enfin on remplir 2 sous-couches de 2 couches différentes 4f,5d. ce qui nous donne 24 électrons

Voici un autre graphique pour utiliser la méthode pour utiliser la règle de Kachlowski :

Vous avez compris ? Moi cela m’a pris un peu de temps, cela demande patience et application.

Je reviendrais plus tard compléter l’article en rapport aux orbitales, au nombre quantique magnétique noté ml et le nombre quantique magnétique de spin(rotation de l’électron).

Je vous ai mis les liens au début de l’article, a vous de les approfondir.

Ce qui m’intéresse maintenant c’est de vous détailler les propriétés chimique d’un élément en particulier le Mercure et dans ses moindres caractéristiques.

MERCURE (HG) 80

Note : Mercure est un élément physique de symbole Hg, de numéro atomique 80 (nombre de protons et d’électrons) il est communément appelé Argent rapide (Quicksilver). Mercure est l’unique élément qui est liquide à des conditions standards pour la température et la pression. Le seul autre élément qui est liquide dans ces conditions est le brome.

Il a été découvert par les égyptiens.

Spectre d’émission : le mercure émet des ondes électromagnétiques donc des ondes de lumière visibles intensément dans le bleu et aussi dans le vert.

Propriétés classiques

Poids Atomique ( Masse atomique relative) : 200.592560642052 (g/mol)

La force de l’attraction terrestre sur l’atome en g/mol

Densité absolue : 13.5336 (g/cm3)

Masse par rapport au volume d’un corps

Point de fusion : -38.83°C = 234.32 K = −37.89 °F

Le point de fusion est le point auquel l’élément change de phase en passant de l’état solide à l’état liquide. Il dépend aussi de la pression mesuré en atmosphère ou kPa (kilo pascal)

Point d’ébullition : 356.73°C= 674.11 F° = 629.88 K

Groupe Atomique : IIB

Valence : I, II 1 ou 2 atomes seulement peuvent participer à des liaisons covalentes.

(Nombre d’électrons sur la couche externe pouvant participer à une liaison chimique)

Période : 6 (couche P dans la table)

Block : d-block veut dire diffuse bloc dans la table périodique quantique (voir la table périodique quantique que j’ai réalisé) En effet il est à la position 5d dans les métaux dits de transition.

L’ion mercure :

L’ion mercure est chargé deux fois Hg2+. Comme je l’avais pensé, cela est du à la perte des deux électrons de la dernière couche externe dite de valence ainsi l’avant dernière sous-couche va être dans un état méga stable avec 10 électrons remplie 5d(iffuse).

Les états d’oxydation :

Voici un point sur lequel je vais m’arrêter longuement, on a abordé dans mes précédents articles sur le table périodique classique et les différentes représentations moléculaires : les liaisons covalentes ou les électrons sont échangés entre les atomes pour former une molécule tout aussi neutre grâce aux électrons de valence.

Mais ces liaisons covalentes ne sont qu’une partie de la chimie, en effet la plupart des autres composés obéissent à des liaisons électro-ioniques ou les électrons ne sont pas échangés mais transférés par électronégativité.

Voilà qui mérite un article à lui seul mais sachez que les états d’oxydation pour un atome dans un composé ionique peuvent aller de -5 à +9 en passant par 0. Ces états ne veulent pas dire que le composé est chargé électriquement ou négativement mais cela représente une valeur scalaire des atomes d’oxygène ou d’hydrogène dans un composé.

Je décrirai toutes ces règles dans un autre article mais sachez que pour le mercure d’après ma table périodique avancé, l’atome Hg peut avoir l’état 0, +1, +2, +4.

Le potentiel d’ionisation

Le potentiel d’ionisation est l’énergie qu’il faut induire à l’atome pour expulser un électron et donc créer un déplacement : 10.438 eV(électron volt)

Le rayon de l’atome : 171(picomètre) soit (10^-12)

Le rayon de covalence :138 (picomètre)(10^-12)

Le rayon de covalence est le rayon de la liaison chimique.

Le rayon de Van Der Waals :209(picomètre (10^-12)

Je vous renvoie à la définition si vous voulez approfondir mais ce qu’il faut savoir c’est que c’est la plus petite approche d’un atome par une sphère donc potentiellement un autre atome.

Van Der Waals 1837-1923

Propriétés Electromagnétique

Conductivité électrique : 1040582.72632674 S/m

Exprime la capacité du matériau à conduire les électrons. Réciproque de la résistivité.

L’unité utilisé que je ne connaissais pas est le (S/m) Siemens par mètre Werner Von Siemens est le nom d’un ancien physicien qui s’intéressait de près à la conductivité du mercure.

Werner Von Siemens 1816-1892

Type électrique : Conducteur

Le point de superconduction :

Il s’agit du point auquel la résistance disparait et le champ magnétique est expulsé. (train Hyperloop) Température proche du zéro absolu.

-269.0°C = -452.2°F = 4.15K

Type Magnétique : Diamagnétisme

Le préfixe dia, veut dire à travers, cela explique pourquoi dans nos anciens sphygmomanomètres le mercure sert à mesurer la pression artérielle systolique et diastolique. Il émet un champ magnétique extérieur opposé ce qui le transforme en instrument de mesure de la pression.

Un tensiomètre électronique fonctionne de manière automatisée, principalement grâce à la méthode oscillométrique.

Susceptibilité Magnétique du volume : -2.84 . 10^-5 (m^3/mol)

Susceptibilité Magnétique de la masse : -2.1 . 10^-9 (m^3/mol)

Susceptibilité Magnétique molaire : -4.21 . 10^-10 (m^3/mol)

Résistivité :

Capacité de résistance de l’atome à l’électricité mesuré en Ω . cm :

9.61 par 10^-7 (Ω . m) (lettre grecque Omega)

Propriétés Thermodynamique

Phase : Liquide

Etat de la matière selon des variables standard de température et de pression. Se dit aussi pour des ondes superposés.

Enthalpy de fusion :

L’enthalpie de fusion anciennement appelée la chaleur de fusion est une fonction que je ne connaissais pas mais qui permet de regrouper en une seule équation toutes les variables thermodynamiques d’un matériau. Les trois variables sont l’énergie interne, la pression et le volume.

Chaleur Spécifique :

139.5 (J/kg . K)

La chaleur spécifique est la capacité thermique d’un matériau rapporté à sa masse exprimé en Jouls/kg par Kelvin.

Expansion thermique :

L’expansion thermique est la capacité du matériau à augmenter en longueur, surface ou volume sous l’effet de la chaleur.

60.4 . 10^-6(C°^-1)

La Chaleur de vaporisation :

59.11 (kJ . mol)

Chaleur pour laquelle le liquide se transforme en vapeur

Les paramètres cristallins, aussi appelés paramètres de maille, sont des grandeurs utilisées pour décrire la maille d’un cristal. On distingue trois longueurs (abc) et trois angles (αβγ) qui déterminent entièrement le parallélépipède qu’est la maille, élémentaire ou multiple.

Les paramètres ab et c sont mesurés en Angstrom en nanomètres (nm), parfois en picomètres, et α (alpha), β (Beta)  et γ (Gamma) en degrés (°).

L’Angstrom est une unité juste en dessous du nanomètre c’est à dire 10^-10m

1ere phase crystalline

Forme du Crystal : Rhomboèdre

longueurs :

a (hexagonal)=3.464 A c (hexagonal)=6.708 A

Attitude : 1.94

2ème phase cristalline

Forme du Crystal :

Le cube corps centré

Propriétés :

a = 3.995 A c = 2.825 A

Debye température :

En thermodynamique et pour la physique des états solides, le modèle de Debye est une méthode développé par Peter Debye pour estimer la contribution du phonon (son) à la chaleur spécifique. Il permet de traiter les vibrations du réseau cristallin de l’atome comme les phonons dans une boite contrastant avec l’effet photoélectrique d’Einstein qui traite du solide comme de nombreux oscillateurs harmoniques quantiques individuels et non interactifs.

Propriétés du matériau

Conductivité Thermique : 8.3 (W/mK)

La mesure qui permet de conduire la chaleur mesuré en Watt par milli (10^-3) Kelvin.

Transmission de la vitesse du son : 1451.4 (m/s)

La vitesse à laquelle le son se propage à l’intérieur du matériau.

Index de Réfraction :1.000933

Modification du chemin de la lumière par son passage dans le matériau

Poisson Ratio :

En science des matériaux, le ratio est un rapport à deux dimensions, il exprime la déformation perpendiculaire par la pression mesuré par le symbole ν (nu)) . Il est défini comme le ratio d’une augmentation de la pression infinitésimale qui a pour résultat une décroissance du volume.

Bulk modulus :

Mesure noté K modulaire de la résistance du matériau à n’importe quelle pression.

Shear modulus :

En science des matériaux, le module de cisaillement ou le module de rigidité, noté G, ou parfois S ou μ, est une mesure de la raideur élastique d’un matériau et est défini comme le rapport entre la contrainte de cisaillement et la déformation de cisaillement 

Propriétés Réactives

Electronégativité : 2

L’électronégativité est une quantification de la force d’attraction des atomes sur les électrons qui vont participer à la liaison chimique pour se lier à d’autres atomes.

Cliquez sur le lien pour voir la table périodique de l’électronégativité.

L’affinité Electronique : -48.0 kJ/mol

L’affinité électronique est l’énergie libérée par un électron lors de la liaison chimique.

Radioactivité : Non

Emission d’onde radio du matériau

Demi-vie : (Aucune car pas radioactif)

Autres propriétés :

Section Efficace des Neutrons : 374 barn

En physique nucléaire la section efficace des neutrons est utilisé pour décrire l’interaction entre un neutron et une autre particule à noyau.

Barn : est une unité de mesure de surface plus petite que le femtomètre (unité la plus petite du système métrique classique 10^-15) donc très utile pour le calcul quantique.

Densité liquide :

13.534 (g/cm^3)

Echelle de Mohs : None

Dureté de Vickers : None

Dureté de Brinnel :

Molar volume :

0.0000148213 (cm^3/mol)

Exercice :

Vous avez compris ? Enfin je remercie mon ami russe qui a réalisé cette table périodique pour moi que je consulte sur mon IPHONE américain. Paix pour un monde meilleur. 😊

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.